

Running Microsoft® Excel® on
the Digipede Network™

Running Microsoft Excel on the Digipede Network

Table of Contents:

Running Microsoft® Excel® on the Digipede Network™ ...1
Executive Summary ...3
Overview..4
Excel Design Patterns..4
Pattern 1: Distributed Workbook ..5

Input Options ..6
Result Options ...8
Excel Considerations ...8
Excel Administrative Constraints ...8

User Identity..8
Resiliency and Stability ...8
Server-Side Security...9

Excel Programmatic Constraints..9
Interactivity with the Desktop...9
Reentrancy and Scalability...9
Excel Coding Lessons..9

Summary ... 10
Pattern 2: Worker DLL ...10

Input Options .. 11
Result Options ... 12

Pattern 3: Hybrid Worker DLL and Distributed Workbook..13
Pattern 4: Digipede Add-In...13
Conclusion ...14
References...14

Digipede Documents.. 14
Microsoft Documents ... 15

Glossary...15

©Copyright Digipede Technologies, LLC.
Digipede and the Digipede Network are trademarks of Digipede Technologies, LLC. Microsoft, Excel, Visual
Basic, and Visual Studio are registered trademarks of Microsoft Corporation in the United States and/or other
countries. All other trademarks are the property of their respective owners.

2

Executive Summary
This white paper helps developers understand how the Digipede Network can improve the
performance of Microsoft Excel computations. After a brief overview with definitions of
concepts and terminology, the paper discusses four design patterns for working with the
Digipede Network and Excel. For a general description of Digipede Network, please read
“Distributed Computing with the Digipede Network;” this document assumes the reader is
familiar with the information in that paper. Developers may also find the companion tutorial,
“Grid-enable Microsoft Excel Tutorial,” helpful.

Running Microsoft Excel on the Digipede Network

Overview
Excel is one of the most popular business applications in the world. Within some organizations
Excel is used extensively to perform computationally intensive analysis, forecasting, modeling,
and report aggregation. Many of these workbooks are parallelizable: they contain
computations that can run at the same time and still produce the expected results. Common
examples include parameter sweeps, Monte Carlo simulations, and other calculations where
the same set of computations is executed many times. Using the Digipede Network an Excel
developer can significantly improve the performance of parallelizable workbooks by grid-
enabling the computations, thus running the workbooks on many machines simultaneously.

This document assumes the developer is using Excel 2003. The upcoming release of Excel 2007
implements additional features that may expand the options for using Excel with the Digipede
Network. Digipede will update this document after the release of Excel 2007.

There are four basic patterns for using Excel with the Digipede Network. In each pattern, the
user starts a "job" on the grid from within an Excel workbook (a workbook that starts a job on
the grid is called a Master workbook). The Master workbook executes on the user's machine
(also called the client machine) and creates and initiates a job. Each job contains "tasks;" a
task represents one computational instance (the distributed work). The distributed work that
executes on the compute nodes can take the form of a distributed workbook and/or a Worker
DLL.

Excel Design Patterns
The four Excel design patterns are: Distributed Workbook, Worker DLL, Hybrid Worker DLL with
Distributed Workbook, and Digipede Add-In. Deciding which Excel design pattern to use will
depend on your workbook architecture, development tools, and Excel installation limitations.

For each Excel workbook to grid-enable there are questions that have to be answered:

• Where are the parallel computations? Which one(s) should execute on the grid?
• What data does the computation need?
• What is being done with the results?
• Is the parallel logic in a spreadsheet, in code-behind, or in a library loaded in code-behind?
• Is Excel installed on the nodes in the compute grid?

The answers to these questions will indicate which Excel design pattern works best for you.

4

Running Microsoft Excel on the Digipede Network

 Distributed

Workbook
Worker DLL Hybrid Digipede Add-

In
No coding required No No No Yes
Can be accomplished with VBA and
VBS

Yes No No N/A (no code
required)

Excel code-behind development
required? (VBA, or .NET)

Yes Yes Yes No

Microsoft IDE (VB6 or Visual
Studio®) required?

No Yes Yes No

Excel installations required on
compute nodes?

Yes No Yes Yes

Pattern 1: Distributed Workbook
Distributing a workbook is the most commonly used Excel design pattern. In this pattern the
developer creates a Master workbook that uses an Excel code-behind subroutine to create a
Digipede Job and Tasks. The developer also creates a Distributed workbook that contains the
parallelizable computation as well as any supporting macros and worksheets. For each task in
the job, the Digipede Network copies the Distributed workbook to a compute node. All
development is done within Excel.

Parallelizable Workbook

Excel Workbook Process Space

Inputs Results

Figure 1. Basic Excel Workbook Pattern

Before a workbook is prepared for distribution it may look like Figure 1 where there is a
parallelizable computation that takes multiple inputs and produces multiple outputs. To
prepare the original workbook for the Digipede Network, the developer separates the
parallelizable computation from the original workbook. This creates two separate workbooks:
a Master workbook and a distributed workbook. Using code-behind and the Digipede
Framework SDK the developer modifies the Master workbook to define the Job and Tasks, while
the distributed workbook is modified to execute a single task.

5

Running Microsoft Excel on the Digipede Network

Figure 2. Basic Excel Distributed Workbook Pattern

Figure 2 contains an overview of how the Excel Distributed Worker Pattern works. The
developer writes the Excel code-behind using VBA, VB.NET, C#, or any other managed
language. Using the Digipede Framework the developer modifies the code-behind to create a
Job and submits the Job to the Digipede Network for distribution. Each compute node checks
into the Digipede Network and when work is available, executes it. Notice that the only Excel
workbook linked to the Digipede Framework is the Master workbook.

In Figure 2 each compute node uses an Excel Controller. An Excel Controller is any script,
batch file, or executable that can create and manage an automated Excel COM object. Using
an Excel Controller provides the developer with a powerful initialization and debugging tool,
and the ability to ensure that the Excel process shuts down completely. Improper shutdown of
Excel on the compute nodes will impact the compute nodes ability to process other distributed
workbook requests.

Input Options
If a distributed workbook requires input from the Master workbook, Digipede Framework
provides the developer with two initialization classes: Parameters and FileDefs. Parameters
are strings passed to the Excel Controller on execution. FileDefs define files the Digipede
Network must move to the compute node.

Parameters are sent to the Excel Controller. The developer can then use the values to update
cells on the distributed workbook. To reduce bandwidth usage the developer should use
Parameters when there are only a few input values. Parameters are an excellent mechanism
for passing database keys into a distributed workbook. Once the distributed workbook has
access to a database key, the developer can use that key to extract data from a database. For
example, in Figure 3 the developer passes Parameters to the Excel Controller. The Excel
Controller updates the distributed workbook with all the Parameter values which include a
database key. The database key is then used by the workbook to retrieve input values and
store result values.

6

Running Microsoft Excel on the Digipede Network

Sample: Input Parameters with Database

D
ig

ip
ed

e
N

et
w

or
k

Compute Node

In
pu

t P
ar

am
et

er
s

E
xc

el

C
on

tro
lle

r:
Sc

rip
t,

B
at

ch
,

E
xe

cu
ta

bl
e

Distributed
Workbook

Client

Master
Workbook C

od
e-

B
eh

in
d:

V

B
A

, V
B

.N
E

T,
 C

#

D
ig

ip
ed

e
Fr

am
ew

or
k

Figure 3. Distributed Workbook Pattern with Input Parameters and Database

Use FileDefs when passing data files to the distributed workbook. The files can use whatever
format the developer wants. The developer can also define a FileDef such that the associated
file has a unique name on the client and a standard name on each compute node. This feature
allows the distributed workbook to open a hard-coded filename, which simplifies the
distributed workbook’s file handling. In Figure 4 the developer has multiple input workbooks
on the client machine and uses the Digipede Network to send one input workbook to each task.
On the compute node the distributed workbook opens the assigned input workbook, does some
processing, and produces a results workbook which is sent back to the client machine by the
Digipede Network.

Sample: Input and Results Workbooks

D
ig

ip
ed

e
N

et
w

or
k

C lient

Master
Workbook C

od
e-

B
eh

in
d:

V

B
A

, V
B

.N
E

T,
 C

#

D
ig

ip
ed

e
Fr

am
ew

or
k

Excel
Workbook

Results

Excel
Workbook

Inputs

Compute Node

Ex
ce

l
C

on
tro

lle
r:

Sc
rip

t,
B

at
ch

,
Ex

ec
ut

ab
le

D istributed
Workbook

Result
Workbook

Input
Workbook

Figure 4. Distributed Workbook Pattern with Input and Result Files

Parameters and FileDefs can also be used together to initialize the distributed workbooks.

7

Running Microsoft Excel on the Digipede Network

Result Options
Notice in Figure 2 that there are no Digipede components running in either the Excel
Controller or the distributed workbook. What this means for the Excel developer is that the
results must be returned outside of the Digipede Network, for example saving the results in a
results file or updating a database.

The developer can use the Digipede Network to return files by creating a FileDef for the result
file. Just like the input files the result file can have a standard name on the compute node and
a unique name on the client. If the developer is going to use a database then the database
information can be passed in using Parameters.

Excel Considerations
When implementing the Distributed Workbook Pattern, Excel must be installed on all the
compute nodes that will service the Job. The Professional Edition of the Digipede Network lets
the developer create a resource pool composed of Excel machines and submit Excel-based Jobs
only to that pool. With the Team Edition of the Digipede Network only one pool is supported,
so all of the compute nodes must have Excel installed.

The Digipede Network starts the Excel Controller which runs "automated" Excel on the compute
nodes. Because Microsoft Excel was designed to run interactively there are design and
development constraints that must be addressed. There are two different levels of
constraints: Administrative and Programmatic. Administrative constraints deal with user
identity, resiliency, stability, and server-side security. Programmatic constraints deal with
Excel interaction, reentrancy, scalability, and Excel idiosyncrasies.

Excel Administrative Constraints

User Identity
Excel is designed to run in an interactive manner. Because of this Excel inherits default
directories and security settings from the logged in user profile. Running Excel as an
automated COM server does not guarantee that the needed settings are there if the application
that invokes Excel uses the system profile. On the Digipede Network the network administrator
must configure each Digipede Agent on the compute nodes in the Excel pool to login using a
valid user profile. See "Domain-level Agent Service User" in the Digipede Administration Guide
for more information. In order for Excel to function properly, this user profile must log into
the system at least once to initialize the data associated with the user profile.

Automated Excel also requires that the Digipede Agent user identity has the correct COM
security settings. This must be manually set by the network administrator in the Component
Services on each compute node. The user profile requires the rights to do both local launch
and local activation.

Resiliency and Stability
During Microsoft Office product installation the installer has the option of performing “install
on first use” for some components. If an uninstalled component is needed by an Office
instance an installation wizard for the missing component is started. This causes a problem for
automated Excel instances because dialogs that can’t be dealt with programmatically. The
developer must ensure that any components required by the distributed workbook are available
on each compute node.

8

Running Microsoft Excel on the Digipede Network

Server-Side Security
The Digipede Server will not accept a Job from a Master application that does not have
credentials on the Digipede Network. This ensures that only users who have been given access
to the Digipede Network can request work on it.

Code level security is the responsibility of the developers. Each developer must ensure that
the distributed workbook’s code is secure and does not interfere with other applications
running on the compute node or network.

Excel macro security must be set to Low to avoid a security dialog. This is required for running
automated Excel (patterns 1, 3 and 4).

Excel Programmatic Constraints

Interactivity with the Desktop
Excel was designed around the user interface so in either the distributed workbook or the Excel
Controller, the developer must programmatically disable all Excel dialogs. Digipede
recommends that the Excel dialogs be re-enabled before the Excel Controller exists.

The developer must not present any user interface in the distributed workbook or Excel
Controller.

Reentrancy and Scalability
Excel can sometimes close down very slowly; if the developer doesn’t release all the objects,
Excel may not close down at all. In addition, if the developer is using managed code (C# or
VB.NET) then the developer must programmatically initiate garbage collection for the Excel
object. It is the Excel developer’s responsibility to make sure that the Excel process started by
the Excel Controller shuts down properly before the Excel Controller exists. Failure to ensure
that the Excel process closes will result in that process being left active and, because Excel
does not support an unlimited number of active Excel instances, the compute node will
eventually be unable to respond to Excel requests.

Excel Coding Lessons
There are also some code specific requirements for both the Excel Controller and the
distributed workbook:

• When referencing a file or a macro always use a fully qualified path. There are two

reasons for this. One, Excel does not use the directory the process was started in as a
working directory so Excel can’t find files without the complete path. And two, a call to
Application.Run() looks at all the open workbooks. Without a fully qualified path to the
code-behind subroutine in the distributed workbook, Excel is not able to find it.

• After completing a task, the Excel Controller should determine if there are any other Excel
processes on the machine; if there are none, it should invoke Application.Quit() to close
Excel. If there are any other Excel processes, the controller should not invoke
Application:Quit(): A call to Application.Quit() will shut down all open instances of Excel--
even those instances that are currently being used by the human user.

• Do not use Application.Calculate() because it will cause all open workbooks to calculate
(even workbooks not associated with this job). Instead the developer needs to understand
the worksheet calculation dependencies within the distributed workbook and make
Worksheet.Calculate() calls in the correct order.

• If the developer creates an Excel Controller with a script, use a non-GUI based script
launcher. For example if the script is written in VBS the developer has the option to use

9

Running Microsoft Excel on the Digipede Network

either wscript.exe or cscript.exe. Because cscript.exe does not support a GUI, the
developer should use cscript.exe to execute the script.

Summary
Automated Excel does have some administrative and programmatic constraints but there are
solutions for each one. While the developer must be aware of the programmatic constraints
when designing and writing the Excel Controller and the distributed workbook, the Digipede
Network was designed to handle the administrative constraints. Constraints are discussed in
detail in the “Grid-enable Microsoft Excel Tutorial: Using a Distributed Workbook.”

Pattern 2: Worker DLL
Developers who have the tools to develop .NET or COM software can use the Digipede
Framework API to build a Worker DLL. A Worker DLL is a dynamic linked library that contains a
serializable class derived from the Digipede Worker class. Objects created from a Worker-
derived class can be distributed around the grid for execution on the compute nodes. When
using a Worker derived-class from Excel code-behind the developer has the option of using VBA
in the code-behind with a COM-based Worker DLL or managed code (C# or VB.NET) in the code-
behind with a Visual Studio Tools for Office (VSTO)-based Worker DLL.

Excel workbooks that contain code-behind computations that are not dependent on Excel-
specific functionality are good candidates for Pattern 2. The parallelizable computation is
moved into a Worker derived class in a Worker DLL and then the Job and distributable objects
are created in the Master workbook’s code-behind. Although this Pattern is less common with
Excel developers because of the development tools required to create the DLL, there are some
great benefits.

Benefits include:

• Excel installations are not required on the compute nodes; this eliminates the Excel

automation constraints and frees you from needing Excel licenses for every node on your
grid.

• Excel processes are not started on the compute nodes resulting in a performance
improvement.

• Excel workbooks, which are at minimum 12K in size, are not being moved around the network
thus reducing network bandwidth utilization.

10

Running Microsoft Excel on the Digipede Network

 Excel Worker DLL Pattern

D
ig

ip
ed

e
N

et
w

or
k

Client

Master
Workbook C

od
e-

B
eh

in
d:

V

B
A

, V
B

.N
ET

, C
#

D
ig

ip
ed

e
Fr

am
ew

or
k

W
or

ke
r D

LL
Compute Node

D
ig

ip
ed

e
Fr

am
ew

or
k

W
or

ke
r D

LL

Figure 5. Basic Excel Distributed Worker DLL Pattern

Figure 5 shows the addition of the Worker DLL to the application distribution model. As in
Pattern 1 the developer sets up the Job in the code behind the Master Excel workbook. For
each Task the developer creates a new Worker-derived object and assigns it to the Task. When
the Job is submitted to the Digipede Network the Worker-derived objects are serialized and
sent to the assigned compute nodes. On each compute node the object is deserialized and the
DoWork() method is called. DoWork() is a virtual method defined in the Digipede Worker class
and provides an execution starting point for the distributed computation. The developer must
define a DoWork() method in the derived class and can think of the DoWork() method as a
main() for the distributed work.

Input Options
The Worker DLL design pattern provides the developer with three initialization options:
member variables in the worker object, FileDefs, and Parameters. Member variables in the
object are data structures or values that are defined in the Worker-derived class. FileDefs are
Digipede objects that define files the Digipede Network must move to the compute node.
Parameters are Digipede objects that are available to the object through the Worker class.

Using member variables is the most common technique for initializing Worker DLL
computations, and for OOP developers it is a very familiar one. This technique allows the
developer to encapsulate all the information needed for the computation within the class.
Because the variables are part of the class the developer can start using them as soon as
DoWork() is entered. There is no need to parse a file or search for a Parameter.

FileDefs define files that the Digipede Network will move from the client to the compute
nodes. FileDefs are good for moving large quantities of data or preexisting input files. The
files can use whatever format the developer wants. If the developer decides to move Excel
workbooks and use automated Excel to process them, then Excel must be installed on the
compute nodes. Distributing Excel workbooks also means that the developer is using Pattern 3.

Parameters are name-value pairs defined in the Master workbook code-behind that creates the
Job and Tasks. By design, the Digipede Worker class contains a Task object which has a
Parameter collection containing the Parameters the developer created. The developer can
access the Parameters from the DoWork() method and use those values in the computation.

11

Running Microsoft Excel on the Digipede Network

Sample: User-Defined Variables with
Database

D
ig

ip
ed

e
N

et
w

or
k

Client

Master
Workbook C

od
e-

B
eh

in
d:

V

B
A

, V
B

.N
ET

, C
#

D
ig

ip
ed

e
Fr

am
ew

or
k

W
or

ke
r D

LL

Compute Node

D
ig

ip
ed

e
Fr

am
ew

or
k

W
or

ke
r D

LL

Figure 6. Sample: User-defined Variables with Database

As in Pattern 1, the developer can use all three input types in combination if required. The
developer can also pass in a database key and extract computation data from a database table
as shown in Figure 6.

Result Options
Because a developer using this pattern employs the Digipede API in the Worker DLL, she has a
few more options for returning results. Following are the options for returning results to the
Master workbook using Pattern 2:

• Member variables in the Worker-derived object. Returning results in the member variables

is the most common technique for returning Task results to the Master workbook. Just as
the developer used member variables to pass input values to the Worker-derived class, the
developer can also use member variables to return results to the Master workbook. After
the task has completed, the object is automatically serialized and returned to the calling
application.

• Using the TaskData property. The Digipede Worker class contains a TaskResult object. The
TaskResult object returns information about the Task such as exit codes to the Master
workbook. The TaskResult object also contains a TaskData property that the developer can
use to return a single variable. When using COM the TaskData can contain any COM
automation compatible typed object, and in .NET the TaskData can be any serializable
object.

• Create FileDefs to return result files. While setting up the Job and defining the Tasks the
developer creates FileDefs called ResultPlaceholders that instruct the Digipede Network to
move result files from the compute node to the client machine. As each Task completes
the Digipede Network automatically moves the results files to the client machine.

• Use a database. The developer can store results in a database. Using user-defined
variables or Parameters to pass the database information to the Worker-derived class the
developer can then update a database from the DoWork() method.

12

Running Microsoft Excel on the Digipede Network

Pattern 3: Hybrid Worker DLL and Distributed Workbook
Pattern 3 uses a Worker DLL as an Excel Controller for a Distributed workbook. The biggest
advantage to this hybrid approach is that developer has the option to use member variables to
pass data between the Master workbook and the distributed workbook. One of the limitations
of Pattern 1: Distributed Workbook is that the only way to return results is by returning a file.
With Pattern 3, the developer can use the member variables of the distributed objects to
return results.

In Figure 7 the developer creates a Worker DLL that is called from code-behind Excel. Within
the Excel code-behind subroutine the developer creates the Job and Tasks. For each task, the
Worker DLL on the compute node deserializes the object and executes DoWork(). Within
DoWork() the developer uses the member variables to initialize cells on the distributed
workbook, starts the computation, extracts results from the workbook, and stores the results
into its member variables. The Digipede Network automatically returns the Worker-derived
object back to the Master workbook when the task completes. Where the developer can easily
access the results.

Worker DLL with Distributed Workbook
D

ig
ip

ed
e

N
et

w
or

k

Client

Master
Workbook C

od
e-

B
eh

in
d:

V

B
A

, V
B

.N
ET

, C
#

D
ig

ip
ed

e
Fr

am
ew

or
k

W
or

ke
r D

LL

Compute Node

Distributed
Workbook

W
or

ke
r D

LL

D
ig

ip
ed

e
Fr

am
ew

or
k

Figure 7. Worker DLL with Distributed Workbook Pattern

Pattern 4: Digipede Add-In
Digipede Technologies has created an Excel add-in that allows an Excel user to distribute
workbooks without having to write any code. This Add-In can be used to distributed
spreadsheets that have iterative, looping calculations. For example, a workbook may have one
worksheet that has a complicated series of calculations on it and another worksheet that
contains input data--each row on the input spreadsheet has a set of inputs for the calculation
page. Without the Digipede Network, the user would have to write VBA code to loop through
the rows on the input worksheet, copying the input data to the calculation worksheet,
performing the calculation, and copying the results to a results sheet. With the Digipede
Network, the data on each row on the input worksheet would be distributed to compute nodes
and copied into the calculation worksheet; the results would then be returned. The user must
be able to encapsulate the set of inputs and the parallelizable computation, but once that
process is complete, the distributed execution is handled by the Digipede Add-In. The user
does not have to programmatically create the Job or Tasks.

13

Running Microsoft Excel on the Digipede Network

Digipede Excel Add-In Pattern

D
ig

ip
ed

e
N

et
w

or
k

Compute Node

D
ig

ip
ed

e
Fr

am
ew

or
k

D
ig

ip
ed

e
A

dd
-In

Distributed
Workbook

Client

D
ig

ip
ed

e
Fr

am
ew

or
k

D
ig

ip
ed

e
A

dd
-In

Master
Workbook

Figure 8. Digipede Excel Add-In Pattern

Figure 8 shows that the Digipede Excel Add-In acts as a bridge between the Master workbook
and the distributed workbook. In the Master workbook the Digipede Excel Add-in collects input
data for the Tasks from an Input worksheet. Using a form available on the toolbar in the
Master workbook, the user designates the input worksheet, the calculation worksheet, and the
results worksheet. When the user clicks the Submit button, the job is submitted.

On the compute node the Digipede Excel Add-in receives the input values for the Task and
copies them into the worksheet. The distributed workbook then uses those values in the
computation and moves the results to a Task Results worksheet. The Add-in extracts the
values from the Task Results worksheet and returns those results to the Master workbook
Results worksheet.

The Digipede Excel Add-in was designed for Excel users who need a code-free way to distribute
Excel workbooks. To find out more about pricing and availability of the Digipede Excel Add-In
please contact sales@digipede.net.

Conclusion
The Digipede Network can increase your company’s ability to respond to business changes,
reduce risk, and increase productivity. With usage patterns ranging from .NET development to
VBA to a code-free Excel Add-In, the Digipede Network has the power and flexibility to handle
many different scenarios. The Digipede Framework gives Excel developers the flexibility to
distribute computations in the manner that best suits their business requirements.

References
To learn more about the Digipede Network and Digipede Technologies visit us on the web at
www.digipede.net, signup for a free webinar, or contact our sales department and get started
today.

Digipede Documents
“Distributed Computing with the Digipede Network”
“The Digipede Framework™ Software Development Kit (SDK)”
“Grid-enable Microsoft Excel Tutorial: Using a Distributed Workbook”
“Digipede Network Administration Guide” (installed with the Digipede Server)

14

http://www.digipede.net/
http://www.digipede.net/downloads/Digipede_Network_Whitepaper.pdf
http://www.digipede.net/downloads/Digipede_SDK_Whitepaper.pdf

Running Microsoft Excel on the Digipede Network

“Digipede Developer’s Guide” (installed with the Digipede Framework SDK)
“Digipede Samples Guide” (installed with the Digipede Framework SDK)

Microsoft Documents
“Considerations for server-side Automation of Office”
“How to Dismiss a Dialog Box Displayed by an Office Application with Visual Basic”
“Office Application does not quit after automation from Visual Studio .NET client”
“Running Subroutines and Macros from Visual Basic”
“Description of the startup switches for Excel”

Glossary
This is a partial glossary of terms used in this document.

• Client machine: A machine on which a master workbook is running; any
machine on which a user is running or monitoring jobs on the Digipede
Network.

• Compute resource: A machine on which the Digipede Agent is running; a
machine that may execute Tasks for Jobs running on the Digipede Network.

• Digipede Agent: The software component that manages the compute resource
for the Digipede Network. This is a small, unobtrusive program that does not
require any interaction with any user of the compute resource.

• Digipede Control: The administrative component of the Digipede Network.
Digipede Control is a website (usually hosted on the same computer as the
Digipede Server) through which an administrator can monitor and administer
the Digipede Network, and through which users can start and monitor their
Jobs.

• Digipede Framework: The component that supports building and running
distributed applications on the Digipede Network. It provides a hierarchical set
of class libraries that allows developers to grid-enable .NET applications, and also
allows for distribution of COM and non-.NET software.

• Digipede Network: Software for managing distributed applications across
Windows computers. The components include the Digipede Server, the
Digipede Agents, the Digipede Framework, Digipede Control, and the
Digipede Workbench.

• Digipede Server: The software that manages jobs and all communication with
the Digipede Agents.

• Distributed workbook: An Excel workbook that an Excel Controller manages
for execution on compute resources.

• Excel Controller: Any script or assembly that the Digipede Agent manages for
execution on compute resources. The Excel Controller controls the execution of
the distributed workbook.

• Job: Contains the details for a specific run of a JobTemplate, and it is
composed of one or more Tasks. The Job and its Tasks completely specify all
details necessary to run a job against a job template: the files (by way of
FileDefs) and the Parameters. It also contains any overrides of the
JobDefaults values.

• JobTemplate: Contains information about the overall structure of a distributed
application. This includes the files that will be installed on a compute resource
to run the job and information about how to start and monitor the Job.

15

http://support.microsoft.com/kb/257757/
http://support.microsoft.com/kb/259971/
http://support.microsoft.com/default.aspx?scid=KB;EN-US;q317109
http://support.microsoft.com/default.aspx?scid=kb;en-us;108519
http://support.microsoft.com/default.aspx?kbid=291288

Running Microsoft Excel on the Digipede Network

• Master workbook: Any Excel workbook that runs jobs on the Digipede
Network.

• Pool: A collection of compute resources on which jobs are run. Jobs are
submitted to individual pools, so pools are an effective way to control which
compute resources work on which jobs. Digipede Network Team Edition
features one pool; the Digipede Network Professional Edition allows for an
unlimited number of pools. Compute Resources may belong to more than one
pool.

• Task: The part of a Job that is run on an individual compute resource. Most
jobs are composed of many tasks.

16

	Executive Summary
	Overview
	Excel Design Patterns
	Pattern 1: Distributed Workbook
	Input Options
	Result Options
	Excel Considerations
	Excel Administrative Constraints
	User Identity
	Resiliency and Stability
	Server-Side Security

	Excel Programmatic Constraints
	Interactivity with the Desktop
	Reentrancy and Scalability
	Excel Coding Lessons

	Summary

	Pattern 2: Worker DLL
	Input Options
	Result Options

	Pattern 3: Hybrid Worker DLL and Distributed Workbook
	Pattern 4: Digipede Add-In
	Conclusion
	References
	Digipede Documents
	Microsoft Documents

	Glossary

